AbstractElectric vehicles (EVs) powered by lithium-ion batteries (LIBs) or proton exchange membrane hydrogen fuel cells (PEMFCs) offer important potential climate change mitigation effects when combined with clean energy sources. The development of novel nanomaterials may bring about the next wave of technical improvements for LIBs and PEMFCs. If the next generation of EVs is to lead to not only reduced emissions during use but also environmentally sustainable production chains, the research on nanomaterials for LIBs and PEMFCs should be guided by a life-cycle perspective. In this Analysis, we describe an environmental life-cycle screening framework tailored to assess nanomaterials for electromobility. By applying this framework, we offer an early evaluation of the most promising nanomaterials for LIBs and PEMFCs and their potential contributions to the environmental sustainability of EV life cycles. Potential environmental trade-offs and gaps in nanomaterials research are identified to provide guidance for future nanomaterial developments for electromobility. Subscription info for Chinese customersWe have a dedicated website for our Chinese customers. Please go to naturechina.com to subscribe to this journal.Go to naturechina.comRent or Buy articleGet time limited or full article access on ReadCube.from$8.99Rent or BuyAll prices are NET prices. Figure 1: Early life-cycle environmental screening of lithium-ion batteries and proton exchange membrane hydrogen fuel cells for electric vehicles.Figure 2: Anode materials for lithium-ion batteries.Figure 3: Cathode materials for lithium-ion batteries.Figure 4: Cathode catalyst materials for polymer electrolyte membrane fuel cells.Figure 5: Catalyst support materials for polymer electrolyte membrane fuel cells. Change history14 December 2016In the original version of this Analysis Christine Roxanne Hung should have been acknowledged as a corresponding author. This has been corrected in the online versions of the Analysis.References1Gabriel, B. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) 351鈥?12 (IPCC, Cambridge Univ. Press, 2014). Google Scholar聽 2Sims, R. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) 1鈥?15 (IPCC, Cambridge Univ. Press, 2014). Google Scholar聽 3Shepard, S. Jerram, L. Executive Summary: Transportation Forecast: Light Duty Vehicles (Navigant Consulting, 2015). Google Scholar聽 4Global EV Outlook 2016: Beyond One Million Electric Cars (International Energy Agency, 2016).5European Automobile Manufacturers\' Association Overview of Purchase and Tax Incentives for Electric Vehicles in the EU 1鈥? (European Automobile Manufacturers\' Association, 2016).6Crabtree, G., K贸cs, E. Trahey, L. The energy-storage frontier: lithium-ion batteries and beyond. MRS Bull. 40, 1067鈥?078 (2015).CAS聽 Article聽Google Scholar聽 7Samaras, C. Meisterling, K. Life cycle assessment of greenhouse gas emissions from plug-in hybrid vehicles: implications for policy. Environ. Sci. Technol. 42, 3170鈥?176 (2008).CAS聽 Article聽Google Scholar聽 8Szczechowicz, E., Dederichs, T. Schnettler, A. Regional assessment of local emissions of electric vehicles using traffic simulations for a use case in Germany. Int. J. Life Cycle Assess. 17, 1131鈥?141 (2012).CAS聽 Article聽Google Scholar聽 9Helmers, E. Marx, P. Electric cars: technical characteristics and environmental impacts. Environ. Sci. Eur. 24, 1鈥?5 (2012).10Simons, A. Bauer, C. A life-cycle perspective on automotive fuel cells. Appl. Energy 157, 884鈥?96 (2015).CAS聽 Article聽Google Scholar聽 11Hellweg, S. Mil脿 i Canals, L. Emerging approaches, challenges and opportunities in life cycle assessment. Science 344, 1109鈥?113 (2014).CAS聽 Article聽Google Scholar聽 12Kushnir, D. Sand茅n, B. a. Energy requirements of carbon nanoparticle production. J. Ind. Ecol. 12, 360鈥?75 (2008).CAS聽 Article聽Google Scholar聽 13Kushnir, D. Sand茅n, B. A. Multi-level energy analysis of emerging technologies: a case study in new materials for lithium ion batteries. J. Clean. Prod. 19, 1405鈥?416 (2011).CAS聽 Article聽Google Scholar聽 14Bartolozzi, I., Rizzi, F. Frey, M. Comparison between hydrogen and electric vehicles by life cycle assessment: a case study in Tuscany, Italy. Appl. Energy 101, 103鈥?11 (2013).Article聽Google Scholar聽 15Bauer, C., Hofer, J., Althaus, H.-J., Del Duce, A. Simons, A. The environmental performance of current and future passenger vehicles: Life Cycle Assessment based on a novel scenario analysis framework. Appl. Energy 157, 871鈥?83 (2015).Article聽Google Scholar聽 16Dunn, J. B., Gaines, L., Kelly, J. C., James, C. Gallagher, K. G. The significance of Li-ion batteries in electric vehicle life-cycle energy and emissions and recycling\'s role in its reduction. Energy Environ. Sci. 8, 158鈥?68 (2015).CAS聽 Article聽Google Scholar聽 17Faria, R., Moura, P., Delgado, J. de Almeida, A. T. A sustainability assessment of electric vehicles as a personal mobility system. Energy Convers. Manag. 61, 19鈥?0 (2012).Article聽Google Scholar聽 18Ellingsen, L. A.-W., Singh, B. Str酶mman, A. H. The size and range effect: lifecycle greenhouse gas emissions of electric vehicles. Environ. Res. Lett. 11, 054010 (2016).Article聽 CAS聽Google Scholar聽 19Hawkins, T. R., Singh, B., Majeau-Bettez, G. Str酶mman, A. H. Comparative environmental life cycle assessment of conventional and electric vehicles. J. Ind. Ecol. 17, 53鈥?4 (2012).Article聽 CAS聽Google Scholar聽 20Miotti, M., Hofer, J. Bauer, C. Integrated environmental and economic assessment of current and future fuel cell vehicles. Int. J. Life Cycle Assess. http://dx.doi.org/10.1007/s11367-015-0986-4 (2015).21Notter, D. A., Kouravelou, K., Karachalios, T., Daletou, M. K. Haberland, N. T. Life cycle assessment of PEM FC applications: electric mobility and 渭-CHP. Energy Environ. Sci. 8, 1969鈥?985 (2015).CAS聽 Article聽Google Scholar聽 22Notter, D. A. et al. Contribution of Li-ion batteries to the environmental impact of electric vehicles. Environ. Sci. Technol. 44, 6550鈥?556 (2010).CAS聽 Article聽Google Scholar聽 23Li, B., Gao, X., Li, J. Yuan, C. Life cycle environmental impact of high-capacity lithium ion battery with silicon nanowires anode for electric vehicles. Environ. Sci. Technol. 48, 3047鈥?055 (2014).CAS聽 Article聽Google Scholar聽 24Majeau-Bettez, G., Hawkins, T. R. Str酶mman, A. H. Life cycle environmental assessment of lithium-ion and nickel metal hydride batteries for plug-in hybrid and battery electric vehicles. Environ. Sci. Technol. 45, 4548鈥?554 (2011).CAS聽 Article聽Google Scholar聽 25Zackrisson, M., Avellan, L. Orlenius, J. Life cycle assessment of lithium-ion batteries for plug-in hybrid electric vehicles 鈥?critical issues. J. Clean. Prod. 18, 1519鈥?529 (2010).CAS聽 Article聽Google Scholar聽 26Singh, B., Guest, G., Bright, R. M. Str酶mman, A. H. Life cycle assessment of electric and fuel cell vehicle transport based on forest biomass. J. Ind. Ecol. 18, 176鈥?86 (2014).CAS聽 Article聽Google Scholar聽 27Othman, R., Dicks, A. L. Zhu, Z. Non precious metal catalysts for the PEM fuel cell cathode. Int. J. Hydrogen Energy 37, 357鈥?72 (2012).CAS聽 Article聽Google Scholar聽 28Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486, 43鈥?1 (2012).CAS聽 Article聽Google Scholar聽 29Wu, J. et al. A review of PEM fuel cell durability: degradation mechanisms and mitigation strategies. J. Power Sources 184, 104鈥?19 (2008).CAS聽 Article聽Google Scholar聽 30Shiau, C.-S. N., Samaras, C., Hauffe, R. Michalek, J. J. Impact of battery weight and charging patterns on the economic and environmental benefits of plug-in hybrid vehicles. Energy Policy 37, 2653鈥?663 (2009).Article聽Google Scholar聽 31Iwan, A., Malinowski, M. Pasciak, G. Polymer fuel cell components modified by graphene: electrodes, electrolytes and bipolar plates. Renew. Sustain. Energy Rev. 49, 954鈥?67 (2015).CAS聽 Article聽Google Scholar聽 32Aric貌, A. S., Bruce, P., Scrosati, B., Tarascon, J.-M. van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4, 366鈥?77 (2005).Article聽 CAS聽Google Scholar聽 33Bruce, P. G., Scrosati, B. Tarascon, J.-M. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 2930鈥?946 (2008).CAS聽 Article聽Google Scholar聽 34Goriparti, S. et al. Review on recent progress of nanostructured anode materials for Li-ion batteries. J. Power Sources 257, 421鈥?43 (2014).CAS聽 Article聽Google Scholar聽 35Nie, Y., Li, L. Wei, Z. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem. Soc. Rev. 44, 2168鈥?01 (2015).CAS聽 Article聽Google Scholar聽 36Whittingham, M. S. Inorganic nanomaterials for batteries. Dalton Trans. 2008, 5424鈥?431 (2008).Article聽 CAS聽Google Scholar聽 37Whittingham, M. S. Ultimate limits to intercalation reactions for lithium batteries. Chem. Rev. 114, 11414鈥?1443 (2014).CAS聽 Article聽Google Scholar聽 38Obrovac, M. N. Chevrier, V. L. Alloy negative electrodes for Li-ion batteries. Chem. Rev. 114, 11444鈥?1502 (2014).CAS聽 Article聽Google Scholar聽 39Liu, C., Li, F., Ma, L.-P. Cheng, H.-M. Advanced materials for energy storage. Adv. Mater. 22, E28鈥揈62 (2010).CAS聽 Article聽Google Scholar聽 40Gallagher, K. G. et al. Quantifying the promise of lithium鈥揳ir batteries for electric vehicles. Energy Environ. Sci. 7, 1555鈥?563 (2014).CAS聽 Article聽Google Scholar聽 41Graedel, T. E., Allenby, B. R. C慰mrie, P. R. Matrix approaches to abridged life cycle assessment. Environ. Sci. Technol. 29, 134A鈥?39A (1995).CAS聽 Article聽Google Scholar聽 42Graedel, T. E. Streamlined Life-Cycle Assessment (Prentice Hall, 1998). Google Scholar聽 43Todd, J. A. et al. Streamlined Life-Cycle Assessment: A Final Report from the SETAC North America Streamlined LCA Workgroup (Society of Environmental Toxicology and Chemistry, 1999). Google Scholar聽 44Anastas, P. T. Warner, J. C. Green Chemistry: Theory and Practice (Oxford Univ. Press, 1998). Google Scholar聽 45Anastas, P. T. Eghbali, N. Green chemistry: principles and practice. Chem. Soc. Rev. 39, 301鈥?12 (2010).CAS聽 Article聽Google Scholar聽 46Ellingsen, L. A.-W. et al. Life cycle assessment of a lithium-ion battery vehicle pack. J. Ind. Ecol. 18, 113鈥?24 (2014).CAS聽 Article聽Google Scholar聽 47Nitta, N., Wu, F., Lee, J. T. Yushin, G. Li-ion battery materials: present and future. Mater. Today 18, 252鈥?64 (2015).CAS聽 Article聽Google Scholar聽 48Whittingham, M. S. History, evolution, and future status of energy storage. Proc. IEEE 100, 1518鈥?534 (2012).CAS聽 Article聽Google Scholar聽 49Yoshino, A. in Lithium-Ion Batteries: Advances and Applications (ed. Pistoia, G.) 1鈥?0 (Elsevier, 2014).Book聽Google Scholar聽 50ReCiPe Mid/Endpoint Method, version 1.11 (ReCiPe, 2015).51Ecoinvent Data and Reports 3.2 (Ecoinvent Centre, 2015).52Hudak, N. S. in Lithium-Ion Batteries: Advances and Applications (ed. Pistoia, G.) 57鈥?2 (Elsevier, 2014).Book聽Google Scholar聽 53Ohta, N., Nagaoka, K., Hoshi, K., Bitoh, S. Inagaki, M. Carbon-coated graphite for anode of lithium ion rechargeable batteries: graphite substrates for carbon coating. J. Power Sources 194, 985鈥?90 (2009).CAS聽 Article聽Google Scholar聽 54Latorre-Sanchez, M., Primo, A. Garcia, H. Green synthesis of Fe3O4 nanoparticles embedded in a porous carbon matrix and its use as anode material in Li-ion batteries. J. Mater. Chem. 22, 21373鈥?1375 (2012).55Lahiri, I. Choi, W. Carbon nanostructures in lithium ion batteries: past, present, and future. Crit. Rev. Solid State Mater. Sci. 38, 128鈥?66 (2013).CAS聽 Article聽Google Scholar聽 56Safety Data Sheet 鈥?Carbon Nanostructures (US Research Nanomaterials, 2015).57Material Safety Data Sheets (ESPI Metals, accessed 22 April 2016); www.espimetals.com/index.php/msds58Kim, H. C. Fthenakis, V. Life cycle energy and climate change implications of nanotechnologies. J. Ind. Ecol. 17, 528鈥?41 (2013).CAS聽 Article聽Google Scholar聽 59Gutowski, T. G. et al. Thermodynamic analysis of resources used in manufacturing processes. Environ. Sci. Technol. 43, 1584鈥?590 (2009).CAS聽 Article聽Google Scholar聽 60艦eng眉l, H., Theis, T. L. Ghosh, S. Toward sustainable nanoproducts. J. Ind. Ecol. 12, 329鈥?59 (2008).Article聽 CAS聽Google Scholar聽 61De Volder, M. F. L., Tawfick, S. H., Baughman, R. H. Hart, A. J. Carbon nanotubes: present and future commercial applications. Science 339, 535鈥?39 (2013).CAS聽 Article聽Google Scholar聽 62Charitidis, C. A., Georgiou, P., Koklioti, M. A., Trompeta, A.-F. Markakis, V. Manufacturing nanomaterials: from research to industry. Manuf. Rev. 1, 11 (2014). Google Scholar聽 63Sharifi, S. et al. Toxicity of nanomaterials. Chem. Soc. Rev. 41, 2323鈥?343 (2012).CAS聽 Article聽Google Scholar聽 64Bystrzejewska-Piotrowska, G., Golimowski, J. Urban, P. L. Nanoparticles: their potential toxicity, waste and environmental management. Waste Manag. 29, 2587鈥?595 (2009).CAS聽 Article聽Google Scholar聽 65K枚hler, A. R., Som, C., Helland, A. Gottschalk, F. Studying the potential release of carbon nanotubes throughout the application life cycle. J. Clean. Prod. 16, 927鈥?37 (2008).Article聽Google Scholar聽 66Graedel, T. E., Harper, E. M., Nassar, N. T., Nuss, P. Reck, B. K. Criticality of metals and metalloids. Proc. Natl Acad. Sci. USA 112, 4257鈥?262 (2015).CAS聽 Article聽Google Scholar聽 67Lee, W. W. Lee, J.-M. Novel synthesis of high performance anode materials for lithium-ion batteries (LIBs). J. Mater. Chem. A 2, 1589鈥?626 (2014).CAS聽 Article聽Google Scholar聽 68Reddy, M. V., Subba Rao, G. V. Chowdari, B. V. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 113, 5364鈥?457 (2013).CAS聽 Article聽Google Scholar聽 69Ma, Y., Ding, B., Ji, G. Lee, J. Y. Carbon-encapsulated F-doped Li4Ti5O12 as a high rate anode material for Li+ batteries. ACS Nano 7, 10870鈥?0878 (2013).CAS聽 Article聽Google Scholar聽 70Anderman, M. The Tesla Battery Report (Total Battery Consulting, 2016). Google Scholar聽 71Safety Data Sheet 鈥?Lithium Titanium Oxide 1鈥? (NEI Corporation, 2014).72Gan, L. et al. A facile synthesis of graphite/silicon/graphene spherical composite anode for lithium-ion batteries. Electrochim. Acta 104, 117鈥?23 (2013).CAS聽 Article聽Google Scholar聽 73Zamfir, M. R., Nguyen, H. T., Moyen, E., Lee, Y. H. Pribat, D. Silicon nanowires for Li-based battery anodes: a review. J. Mater. Chem. A 1, 9566鈥?586 (2013).CAS聽 Article聽Google Scholar聽 74Scrosati, B. Garche, J. Lithium batteries: status, prospects and future. J. Power Sources 195, 2419鈥?430 (2010).CAS聽 Article聽Google Scholar聽 75Su, X. et al. Silicon-based nanomaterials for lithium-ion batteries: a review. Adv. Energy Mater. 4, 1鈥?3 (2014).Article聽 CAS聽Google Scholar聽 76Ge, M., Rong, J., Fang, X. Zhou, C. Porous doped silicon nanowires for lithium ion battery anode with long cycle life. Nano Lett. 12, 2318鈥?323 (2012).CAS聽 Article聽Google Scholar聽 77Jia, H. et al. Novel three-dimensional mesoporous silicon for high power lithium-ion battery anode material. Adv. Energy Mater. 1, 1036鈥?039 (2011).CAS聽 Article聽Google Scholar聽 78Safety Data Sheet 鈥?Silicon Nanopowder/Nanoparticles (US Research Nanomaterials, 2016).79Material Safety Data Sheet 鈥?Monodispersed silicon nanowires (Sigma Aldrich, 2010).80Safety Data Sheet 鈥?Tin Oxide Nanopowder (American Elements, 2015).81Material Safety Data Sheet 鈥?Germanium Nanoparticles (US Research Nanomaterials, accessed 22 April 2016).82Dong, Z. et al. The anode challenge for lithium-ion batteries: a mechanochemically synthesized Sn-Fe-C composite anode surpasses graphitic carbon. Adv. Sci. 3, 1鈥? (2016).Article聽 CAS聽Google Scholar聽 83Sony\'s new nexelion hybrid lithium ion batteries to have thirty-percent more capacity than conventional offering. Sony (15 February 2005); http://www.sony.net/SonyInfo/News/Press/200502/05-006E/84Fan, Q., Chupas, P. J. Whittingham, M. S. Characterization of amorphous and crystalline tin鈥揷obalt anodes. Electrochem. Solid State Lett. 10, A274鈥揂278 (2007).CAS聽 Article聽Google Scholar聽 85Safety Data Sheet 鈥?Iron(II, III) Oxide Nanopowder (American Elements, 2015).86SDS | LTS (LTS Chemical, accessed 22 April 2016); https://www.ltschem.com/msds/87Material Safety Data Sheet 鈥?Cobalt (II) Oxide Nanoparticles (CoO) (US Research Nanomaterials, accessed 22 April 2016).88Safety Data Sheet 鈥?Chromium Oxide Nanopowder (American Elements, 2015).89Safety Data Sheet 鈥?Molybdenum Oxide Nanopowder (American Elements, 2015).90Wang, B., Chen, J. S., Wu, H. B., Wang, Z. Lou, X. W. Quasiemulsion-templated formation of alpha-Fe2O3 hollow spheres with enhanced lithium storage properties. J. Am. Chem. Soc. 133, 17146鈥?7148 (2011).CAS聽 Article聽Google Scholar聽 91Etacheri, V., Marom, R., Elazari, R., Salitra, G. Aurbach, D. Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4, 3243鈥?262 (2011).CAS聽 Article聽Google Scholar聽 92Li, Q. et al. Balancing stability and specific energy in Li-rich cathodes for lithium ion batteries: a case study of a novel Li鈥揗n鈥揘i鈥揅o oxide. J. Mater. Chem. A 3, 10592鈥?0602 (2015).CAS聽 Article聽Google Scholar聽 93Rosenman, A. et al. Review on Li-sulfur battery systems: an integral perspective. Adv. Energy Mater. 5, 1鈥?1 (2015).Article聽 CAS聽Google Scholar聽 94Bruce, P. G., Freunberger, S. A., Hardwick, L. J. Tarascon, J.-M. Li鈥揙2 and Li鈥揝 batteries with high energy storage. Nat. Mater. 11, 19鈥?9 (2012).CAS聽 Article聽Google Scholar聽 95Safety Data Sheet 鈥?Lithium Cobalt Oxide Nanopowder (American Elements, 2015).96Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. 104, 4271鈥?301 (2004).CAS聽 Article聽Google Scholar聽 97Hanisch, C., Diekmann, J., Stieger, A., Haselrieder, W. Kwade, A. in Handbook of Clean Energy Systems http://dx.doi.org/10.1002/9781118991978.hces221 (2015). Google Scholar聽 98Material Safety Data Sheet 鈥?Lithium Manganese Nickel Cobalt Oxide Powder (NEI Corporation, 2014).99Safety Data Sheet 鈥?Lithium Nickel Cobalt Aluminum Oxide (NEI Corporation, 2014).100Liu, J., Wang, R. Xia, Y. Degradation and structural evolution of xLi2MnO3路(1鈭?i>x)LiMn1/3Ni1/3Co1/3O2 during cycling. J. Electrochem. Soc. 161, A160鈥揂167 (2013).Article聽 CAS聽Google Scholar聽 101Safety Data Sheet 鈥?LMR (Pfaltz Bauer, 2013).102Yu, H. Zhou, H. High-energy cathode materials (Li2MnO3鈥揕iMO2) for lithium-ion batteries. J. Phys. Chem. Lett. 4, 1268鈥?280 (2013).CAS聽 Article聽Google Scholar聽 103Liu, J. et al. General synthesis of xLi2MnO3路(1鈭?i>x)LiMn1/3Ni1/3Co1/3O2 nanomaterials by a molten-salt method: towards a high capacity and high power cathode for rechargeable lithium batteries. J. Mater. Chem. 22, 25380鈥?5387 (2012).CAS聽 Article聽Google Scholar聽 104Croy, J. R., Balasubramanian, M., Gallagher, K. G. Burrell, A. K. Review of the US Department of Energy\'s \'deep dive\' effort to understand voltage fade in Li- and Mn-rich cathodes. Acc. Chem. Res. 48, 2813鈥?821 (2015).CAS聽 Article聽Google Scholar聽 105Ellis, B. L., Lee, K. T. Nazar, L. F. Positive electrode materials for Li-ion and Li-batteries. Chem. Mater. 22, 691鈥?14 (2010).CAS聽 Article聽Google Scholar聽 106Pampal, E. S., Stojanovska, E., Simon, B. Kilic, A. A review of nanofibrous structures in lithium ion batteries. J. Power Sources 300, 199鈥?15 (2015).CAS聽 Article聽Google Scholar聽 107Song, M. K., Park, S., Alamgir, F. M., Cho, J. Liu, M. Nanostructured electrodes for lithium-ion and lithium-air batteries: the latest developments, challenges, and perspectives. Mater. Sci. Eng. R Rep. 72, 203鈥?52 (2011).Article聽 CAS聽Google Scholar聽 108Satyavani, T. V. S. L., Srinivas Kumar, A. Subba Rao, P. S. V. Methods of synthesis and performance improvement of lithium iron phosphate for high rate Li-ion batteries: a review. Eng. Sci. Technol. Int. J. 19, 178鈥?88 (2015).Article聽Google Scholar聽 109Lin, Y.-C. et al. Thermodynamics, kinetics and structural evolution of 蔚-LiVOPO4 over multiple lithium intercalation. Chem. Mater. 28, 1794鈥?805 (2015).Article聽 CAS聽Google Scholar聽 110Safety Data Sheet 鈥?Lithium Manganese Oxide Nanoparticles (American Elements, 2015).111Cheng, F. et al. Porous LiMn2O4 nanorods with durable high-rate capability for rechargeable Li-ion batteries. Energy Environ. Sci. 4, 3668鈥?675 (2011).CAS聽 Article聽Google Scholar聽 112Li, W. et al. A sulfur cathode with pomegranate-like cluster structure. Adv. Energy Mater. 5, 1500211 (2015).Article聽 CAS聽Google Scholar聽 113Xu, R., Lu, J. Amine, K. Progress in mechanistic understanding and characterization techniques of Li-S batteries. Adv. Energy Mater. 5, 1鈥?2 (2015). Google Scholar聽 114Cai, K., Song, M.-K., Cairns, E. J. Zhang, Y. Nanostructured Li2S鈥揅 composites as cathode material for high-energy lithium/sulfur batteries. Nano Lett. 12, 6474鈥?479 (2012).CAS聽 Article聽Google Scholar聽 115Wu, S., Ge, R., Lu, M., Xu, R. Zhang, Z. Graphene-based nano-materials for lithium-sulfur battery and sodium-ion battery. Nano Energy 15, 379鈥?05 (2015).CAS聽 Article聽Google Scholar聽 116Son, Y., Lee, J. S., Son, Y., Jang, J. H. Cho, J. Recent advances in lithium sulfide cathode materials and their use in lithium sulfur batteries. Adv. Energy Mater. 5, 1鈥?4 (2015).Article聽 CAS聽Google Scholar聽 117Manthiram, A., Chung, S.-H. Zu, C. Lithium鈥搒ulfur batteries: progress and prospects. Adv. Mater. 27, 1980鈥?006 (2015).CAS聽 Article聽Google Scholar聽 118Safety Data Sheet 鈥?Sulfur Nanopowder (American Elements, 2015).119MSDS Information (American Polymer Standards Corporation, accessed 22 April 2016); www.ampolymer.com/I5-MSDS.html120Sicherheitsdatenblatt 鈥?Polyaniline (Globale EHS-Manages, 2012).121Nan, C. et al. Durable carbon-coated Li2(S) core鈥搒hell spheres for high performance lithium/sulfur cells. J. Am. Chem. Soc. 136, 4659鈥?663 (2014).CAS聽 Article聽Google Scholar聽 122Yang, Y. et al. High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries. J. Am. Chem. Soc. 134, 15387鈥?5394 (2012).CAS聽 Article聽Google Scholar聽 123Georgi-Maschler, T., Friedrich, B., Weyhe, R., Heegn, H. Rutz, M. Development of a recycling process for Li-ion batteries. J. Power Sources 207, 173鈥?82 (2012).CAS聽 Article聽Google Scholar聽 124Reuter, M. A. et al. Metal Recycling: Opportunities, Limits, Infrastructure. A Report of the Working Group on the Global Metal Flows to the International Resource Panel (UNEP, 2013). Google Scholar聽 125Gratz, E., Sa, Q., Apelian, D. Wang, Y. A closed loop process for recycling spent lithium ion batteries. J. Power Sources 262, 255鈥?62 (2014).CAS聽 Article聽Google Scholar聽 126Xu, J. et al. A review of processes and technologies for the recycling of lithium-ion secondary batteries. J. Power Sources 177, 512鈥?27 (2008).CAS聽 Article聽Google Scholar聽 127Som, C. et al. The importance of life cycle concepts for the development of safe nanoproducts. Toxicology 269, 160鈥?69 (2010).CAS聽 Article聽Google Scholar聽 128Scofield, M. E., Liu, H. Wong, S. S. A concise guide to sustainable PEMFCs: recent advances in improving both oxygen reduction catalysts and proton exchange membranes. Chem. Soc. Rev. 44, 5836鈥?860 (2015).CAS聽 Article聽Google Scholar聽 129Duan, H. Xu, C. Nanoporous PtPd alloy electrocatalysts with high activity and stability toward oxygen reduction reaction. Electrochim. Acta 152, 417鈥?24 (2015).CAS聽 Article聽Google Scholar聽 130Chen, Z., Higgins, D., Yu, A., Zhang, L. Zhang, J. A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ. Sci. 4, 3167鈥?192 (2011).CAS聽 Article聽Google Scholar聽 131Shao, M., Chang, Q., Dodelet, J.-P. Chenitz, R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 116, 3594鈥?657 (2016).CAS聽 Article聽Google Scholar聽 132Morozan, A., Jousselme, B. Palacin, S. Low-platinum and platinum-free catalysts for the oxygen reduction reaction at fuel cell cathodes. Energy Environ. Sci. 4, 1238鈥?254 (2011).CAS聽 Article聽Google Scholar聽 133Zhang, W. Pintauro, P. N. High-performance nanofiber fuel cell electrodes. ChemSusChem 4, 1753鈥?757 (2011).CAS聽 Article聽Google Scholar聽 134Brodt, M. et al. Fabrication, in-situ performance, and durability of nanofiber fuel cell electrodes. J. Electrochem. Soc. 162, F84鈥揊91 (2014).Article聽 CAS聽Google Scholar聽 135Alia, S. M. et al. Platinum-coated nickel nanowires as oxygen-reducing electrocatalysts. ACS Catal. 4, 1114鈥?119 (2014).CAS聽 Article聽Google Scholar聽 136Wang, C., Markovic, N. M. Stamenkovic, V. R. Advanced platinum alloy electrocatalysts for the oxygen reduction reaction. ACS Catal. 2, 891鈥?98 (2012).CAS聽 Article聽Google Scholar聽 137Choi, S.-I. et al. Synthesis and characterization of 9 nm Pt鈥揘i octahedra with a record high activity of 3.3 A/mg(Pt) for the oxygen reduction reaction. Nano Lett. 13, 3420鈥?425 (2013).CAS聽 Article聽Google Scholar聽 138Guo, S. et al. FePt and CoPt nanowires as efficient catalysts for the oxygen reduction reaction. Angew. Chem. Int. Ed. 52, 3465鈥?468 (2013).CAS聽 Article聽Google Scholar聽 139Tseng, C.-J., Lo, S.-T., Lo, S.-C. Chu, P. P. Characterization of Pt鈥揅u binary catalysts for oxygen reduction for fuel cell applications. Mater. Chem. Phys. 100, 385鈥?90 (2006).CAS聽 Article聽Google Scholar聽 140Liu, J. et al. Impact of Cu鈥揚t nanotubes with a high degree of alloying on electro-catalytic activity toward oxygen reduction reaction. Electrochim. Acta 152, 425鈥?32 (2015).CAS聽 Article聽Google Scholar聽 141Nuss, P. Eckelman, M. J. Life cycle assessment of metals: a scientific synthesis. PLOS One 9, 1鈥?2 (2014). Google Scholar聽 142Proietti, E. et al. Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. Nat. Commun. 2, 416 (2011).Article聽 CAS聽Google Scholar聽 143Choi, C. H., Chung, M. W., Jun, Y. J. Woo, S. I. Doping of chalcogens (sulfur and/or selenium) in nitrogen-doped graphene鈥揅NT self-assembly for enhanced oxygen reduction activity in acid media. RSC Adv. 3, 12417鈥?2422 (2013).144Wei, Q. et al. Nitrogen-doped carbon nanotube and graphene materials for oxygen reduction reactions. Catalysts 5, 1574鈥?602 (2015).CAS聽 Article聽Google Scholar聽 145Zhan, Y. et al. Iodine/nitrogen co-doped graphene as metal free catalyst for oxygen reduction reaction. Carbon N. Y. 95, 930鈥?39 (2015).CAS聽 Article聽Google Scholar聽 146Li, H. et al. A review of water flooding issues in the proton exchange membrane fuel cell. J. Power Sources 178, 103鈥?17 (2008).CAS聽 Article聽Google Scholar聽 147Higgins, D. et al. Development and simulation of sulfur-doped graphene supported platinum with exemplary stability and activity towards oxygen reduction. Adv. Funct. Mater. 24, 4325鈥?336 (2014).CAS聽 Article聽Google Scholar聽 148Shahgaldi, S. Hamelin, J. Improved carbon nanostructures as a novel catalyst support in the cathode side of PEMFC: a critical review. Carbon 94, 705鈥?28 (2015).CAS聽 Article聽Google Scholar聽 149Sharma, S. Pollet, B. G. Support materials for PEMFC and DMFC electrocatalysts 鈥?a review. J. Power Sources 208, 96鈥?19 (2012).CAS聽 Article聽Google Scholar聽 150Higgins, D. C., Meza, D. Chen, Z. Nitrogen-doped carbon nanotubes as platinum catalyst supports for oxygen reduction reaction in proton exchange membrane fuel cells. J. Phys. Chem. C 114, 21982鈥?1988 (2010).CAS聽 Article聽Google Scholar聽 151Yee, R. S. L., Rozendal, R. A., Zhang, K. Ladewig, B. P. Cost effective cation exchange membranes: a review. Chem. Eng. Res. Des. 90, 950鈥?59 (2012).CAS聽 Article聽Google Scholar聽 152Hongsirikarn, K., Goodwin, J. G., Greenway, S. Creager, S. Influence of ammonia on the conductivity of Nafion membranes. J. Power Sources 195, 30鈥?8 (2010).CAS聽 Article聽Google Scholar聽 153Tripathi, B. P. Shahi, V. K. Organic鈥搃norganic nanocomposite polymer electrolyte membranes for fuel cell applications. Prog. Polym. Sci. 36, 945鈥?79 (2011).CAS聽 Article聽Google Scholar聽 154Kraytsberg, A. Ein-Eli, Y. Review of advanced materials for proton exchange membrane fuel cells. Energy Fuels 28, 7303鈥?330 (2014).CAS聽 Article聽Google Scholar聽 155Ballengee, J. B., Haugen, G. M., Hamrock, S. J. Pintauro, P. N. Properties and fuel cell performance of a nanofiber composite membrane with 660 equivalent weight perfluorosulfonic acid. J. Electrochem. Soc. 160, F429鈥揊435 (2013).CAS聽 Article聽Google Scholar聽 156Tanaka, M. Development of ion conductive nanofibers for polymer electrolyte fuel cells. Polym. J. 48, 51鈥?8 (2015).Article聽 CAS聽Google Scholar聽 157Wycisk, R., Pintauro, P. N. Park, J. W. New developments in proton conducting membranes for fuel cells. Curr. Opin. Chem. Eng. 4, 71鈥?8 (2014).Article聽Google Scholar聽 158Ballengee, J. B. Pintauro, P. N. Composite fuel cell membranes from dual-nanofiber electrospun mats. Macromolecules 44, 7307鈥?314 (2011).CAS聽 Article聽Google Scholar聽 159Subianto, S. Recent advances in polybenzimidazole/phosphoric acid membranes for high-temperature fuel cells. Polym. Int. 63, 1134鈥?144 (2014).CAS聽 Article聽Google Scholar聽 160Safety Data Sheet Product 鈥?Phosphotungstic Acid (Ted Pella, 2015).161Jun, Y., Zarrin, H., Fowler, M. Chen, Z. Functionalized titania nanotube composite membranes for high temperature proton exchange membrane fuel cells. Int. J. Hydrogen Energy 36, 6073鈥?081 (2011).CAS聽 Article聽Google Scholar聽 162Wang, Y., Jin, J., Yang, S., Li, G. Qiao, J. Highly active and stable platinum catalyst supported on porous carbon nanofibers for improved performance of PEMFC. Electrochim. Acta 177, 181鈥?89 (2015).CAS聽 Article聽Google Scholar聽 163Chalkovaa, E. et al. Composite proton conductive membranes for elevated temperature and reduced relative humidity PEMFC. ECS Trans. 25, 1141鈥?150 (2009).Article聽Google Scholar聽 164Kalappa, P. Lee, J.-H. Proton conducting membranes based on sulfonated poly(ether ether ketone)/TiO2 nanocomposites for a direct methanol fuel cell. Polym. Int. 56, 371鈥?75 (2007).CAS聽 Article聽Google Scholar聽 165Chandan, A. et al. High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC) 鈥?a review. J. Power Sources 231, 264鈥?78 (2013).CAS聽 Article聽Google Scholar聽 166Lu, J., Lu, S. Jiang, S. P. Highly ordered mesoporous Nafion membranes for fuel cells. Chem. Commun. 47, 3216鈥?218 (2011).CAS聽 Article聽Google Scholar聽 167Zarrin, H., Higgins, D., Jun, Y., Chen, Z. Fowler, M. Functionalized graphene oxide nanocomposite membrane for low humidity and high temperature proton exchange membrane fuel cells. J. Phys. Chem. C 115, 20774鈥?0781 (2011).CAS聽 Article聽Google Scholar聽 168Patel, A. Dawson, R. Recovery of platinum group metal value via potassium iodide leaching. Hydrometallurgy 157, 219鈥?25 (2015).CAS聽 Article聽Google Scholar聽 169Safety Data Sheet 鈥?Chlorine 1鈥? (Airgas 2015).170Safety Data Sheet 鈥?Sodium Cyanide (Columbus Chemical Industries, 2014).171Safety Data Sheet 鈥?Aqua Regia (Columbus Chemical Industries, 2013).172Handley, C., Brandon, N. P. Van Der Vorst, R. Impact of the European Union vehicle waste directive on end-of-life options for polymer electrolyte fuel cells. J. Power Sources 106, 344鈥?52 (2002).CAS聽 Article聽Google Scholar聽 173Shiroishi, H. et al. Dissolution rate of noble metals for electrochemical recycle in polymer electrolyte fuel cells. Electrochemistry 80, 898鈥?03 (2012).CAS聽 Article聽Google Scholar聽 174Xu, F., Mu, S. Pan, M. Recycling of membrane electrode assembly of PEMFC by acid processing. Int. J. Hydrogen Energy 35, 2976鈥?979 (2010).CAS聽 Article聽Google Scholar聽 Download referencesAcknowledgementsThe authors thank D. U. Lee and H. Zarrin for internal review and discussions. We also thank C. Bangs, D. Rickert, M. Quix, C. Stuyck, R. Weyhe and Q. Pan for communication on recycling of PEMFCs and LIBs. We also thank B. Reck and X. Hu for discussions. This work was financed by the Norwegian University of Science and Technology, the Research Council of Norway through the Centre for Sustainable Energy Studies (grant 209697), and the European Union\'s Horizon 2020 research and innovation programme (grant 646286). The authors remain solely responsible for the content of this article.Author informationAffiliationsIndustrial Ecology Programme and Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), Sem S忙lands vei 7, Trondheim, NO-7491, NorwayLinda Ager-Wick Ellingsen,聽Christine Roxanne Hung,聽Guillaume Majeau-Bettez,聽Bhawna Singh聽 聽Anders Hammer Str酶mmanCIRAIG, 脡cole Polytechnique de Montr茅al, 3333 chemin Queen-Mary, Bureau 310, CP 6079 succ. Centre-ville, Montr茅al, H3C 3A7, Qu茅bec, CanadaGuillaume Majeau-BettezDepartment of Chemical Engineering and Department of Mechanical and Mechatronics Engineering, E6-2006, University of Waterloo, 200 University Avenue West, Waterloo, N2L 3G1, Ontario, CanadaZhongwei ChenNorthEast Center for Chemical Energy Storage, Binghamton University, 4400 Vestal Parkway East, Binghamton, 13902, New York, USAM. Stanley WhittinghamAuthorsLinda Ager-Wick EllingsenView author publicationsYou can also search for this author in PubMed聽Google ScholarChristine Roxanne HungView author publicationsYou can also search for this author in PubMed聽Google ScholarGuillaume Majeau-BettezView author publicationsYou can also search for this author in PubMed聽Google ScholarBhawna SinghView author publicationsYou can also search for this author in PubMed聽Google ScholarZhongwei ChenView author publicationsYou can also search for this author in PubMed聽Google ScholarM. Stanley WhittinghamView author publicationsYou can also search for this author in PubMed聽Google ScholarAnders Hammer Str酶mmanView author publicationsYou can also search for this author in PubMed聽Google ScholarCorresponding authorsCorrespondence to Linda Ager-Wick Ellingsen or Christine Roxanne Hung.Ethics declarations Competing interests The authors declare no competing financial interests. Supplementary information Supplementary informationSupplementary information (PDF 1611 kb) Supplementary informationData sources for Figures 2鈥? (PDF 327 kb) Supplementary informationSupplementary Text (XLSX 3147 kb)Rights and permissionsReprints and PermissionsAbout this articleCite this articleEllingsen, LW., Hung, C., Majeau-Bettez, G. et al. Nanotechnology for environmentally sustainable electromobility. Nature Nanotech 11, 1039鈥?051 (2016). https://doi.org/10.1038/nnano.2016.237Download citationReceived: 13 December 2015Accepted: 03 October 2016Published: 06 December 2016Issue Date: December 2016DOI: https://doi.org/10.1038/nnano.2016.237 Xingdong Wang, Jinjie Fang, Xuerui Liu, Xiangqian Zhang, Qingqing Lv, Zhaoxiang Xu, Xuejiang Zhang, Wei Zhu Zhongbin Zhuang Science China Materials (2020) Colin Campbell, Yong Min Lee, Kuk Young Cho, Young-Gi Lee, Byeongdu Lee, Charudatta Phatak Seungbum Hong Scientific Reports (2018) Linda Ager-Wick Ellingsen, Christine Roxanne Hung, Guillaume Majeau-Bettez, Bhawna Singh, Zhongwei Chen, M. Stanley Whittingham Anders Hammer Str酶mman Nature Nanotechnology (2017)